Display Settings:

Format

Send to:

Choose Destination
Cell Mol Life Sci. 2004 May;61(9):1016-24.

Novel aspects of glypican glycobiology.

Author information

  • 1Department of Cell and Molecular Biology, Section for Cell and Matrix Biology, BMC C13, Lund University, 221 84 Lund, Sweden. lars-ake.fransson@medkem.lu.se

Abstract

Mutations in glypican genes cause dysmorphic and overgrowth syndromes in men and mice, abnormal development in flies and worms, and defective gastrulation in zebrafish and ascidians. All glypican core proteins share a characteristic pattern of 14 conserved cysteine residues. Upstream from the C-terminal membrane anchorage are 3-4 heparan sulfate attachment sites. Cysteines in glypican-1 can become nitrosylated by nitric oxide in a copper-dependent reaction. When glypican-1 is exposed to ascorbate, nitric oxide is released and participates in deaminative cleavage of heparan sulfate at sites where the glucosamines have a free amino group. This process takes place while glypican-1 recycles via a nonclassical, caveolin-1-associated route. Glypicans are involved in growth factor signalling and transport, e.g. of polyamines. Cargo can be unloaded from heparan sulfate by nitric oxide-dependent degradation. How glypican and its degradation products and the cargo exit from the recycling route is an enigma.

PMID:
15112050
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk