Send to:

Choose Destination
See comment in PubMed Commons below
Clin Ther. 2004 Mar;26(3):379-89.

Effects of simvastatin on the lipid profile and attainment of low-density lipoprotein cholesterol goals when added to thiazolidinedione therapy in patients with type 2 diabetes mellitus: A multicenter, randomized, double-blind, placebo-controlled trial.

Author information

  • 1National Research Institute, Los Angeles, California 90057, USA.



Coronary heart disease is the major cause of mortality in individuals with diabetes mellitus (DM). Given the increasingly aggressive low-density lipoprotein cholesterol (LDL-C) goals for patients with DM set by the National Cholesterol Education Program Adult Treatment Panel III and the American Diabetes Association, many patients remain above target. Treatment with thiazolidinediones (TZDs) improves glycemic control but does not lower (and may raise) LDL-C concentrations.


This study assessed the lipid-modifying efficacy and tolerability of adding the hydroxymethylglutaryl coenzyme A-reductase inhibitor simvastatin to existing TZD therapy in patients with type 2 DM.


This was a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. Patients with type 2 DM who were taking a stable dose of pioglitazone or rosiglitazone and had a glycosylated hemoglobin (HbA1c) value < or =9.0% and an LDL-C concentration > 100 mg/dL were randomized to receive simvastatin 40 mg (the recommended initial dose for patients with DM) or placebo for 24 weeks. The primary end point was the effect of treatment on LDL-C concentrations. Other lipid, lipoprotein, and safety measures were also assessed.


Two hundred fifty-three patients (127 [50.2%] men, 126 [49.8%] women; mean age, 56 years) were randomized to treatment (123 simvastatin, 130 placebo). At the end of the study, mean LDL-C concentrations were reduced 34.)% from baseline (from 134.3 to 89.5 mg/dL) in the simvastatin group and were unchanged in the placebo group (P<0.001). Simvastatin produced significant reductions in concentrations of total cholesterol, triglycerides (TG), non-high-density lipoprotein cholesterol, and apolipoprotein (apo) B compared with placebo (all, P<0.001 ) and significant increases in concentrations of high-density lipoprotein cholesterol (HDL-C) ( P=0.002 ) and apo A-I ( P=0.006 ). In patients who had not attained target concentrations of LDL-C (<100 mg/dL), TG (<150 mg/dL), or HDL-C (>45 mg/dL) at baseline, significantly more simvastatin recipients had achieved these goals at the end of the study compared with placebo recipients (LDL-C: 67.3% vs 5.2%, respectively, P<0.001; HDL-C: 95.3% vs 83.6%, P<0.05; TG: 40.8% vs 11.0%, P<0.001 ). Simvastatin was well tolerated, and no clinically meaningful differences in the incidence of serious adverse events, treatment-related adverse events, or discontinuations due to adverse events were observed between groups. There were no significant between-group differences in glycemic control (HbA1c) or concentrations of fasting insulin, creatine phosphokinase, or hepatic transaminases.


Simvastatin was an effective and generally well tolerated treatment for hyperlipidemia when used in combination with TZD therapy in this population of patients with type 2 DM.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk