Effects of chronic intermittent asphyxia on haematocrit, pulmonary arterial pressure and skeletal muscle structure in rats

Exp Physiol. 2004 Jan;89(1):44-52. doi: 10.1113/expphysiol.2003.002656.

Abstract

Sleep-disordered breathing in humans is a common condition associated with serious cardiovascular and other abnormalities. The prevalence and pathogenesis of increased haematocrit and pulmonary hypertension is controversial and it has been suggested that these changes only occur in patients who also have daytime continuous hypoxaemia. The hypothesis tested here is that the chronic intermittent hypoxia and asphyxia associated with sleep-disordered breathing causes erythropoiesis and pulmonary hypertension and that this occurs in the absence of periods of continuous hypoxia. In humans and animals with obstructive sleep apnoea, there are abnormalities of upper airway muscle structure that have been ascribed to increased load placed on these muscles. An alternative hypothesis is that chronic intermittent hypoxia and asphyxia cause changes in upper airway muscle structure and function. To test these hypotheses, rats were exposed to intermittent hypoxia and asphyxia for 8 h per day for 5 weeks. This caused an increase in haematocrit, right ventricular weight and pulmonary arterial pressure. There were only slight changes in diaphragm, upper airway and limb muscle structure and force production but in general, muscle fatigability was increased. In conclusion chronic intermittent hypoxia and asphyxia cause an increase in haematocrit and pulmonary arterial pressure in the absence of periods of continuous hypoxia. Chronic intermittent hypoxia and asphyxia have little effect on skeletal muscle structure and force production but increase muscle fatigue. Increased upper airway muscle fatigue could lead to a vicious cycle of further compromise in upper airway patency and further hypoxia and asphyxia.

Publication types

  • Review

MeSH terms

  • Animals
  • Asphyxia / physiopathology*
  • Chronic Disease
  • Hematocrit*
  • Muscle, Skeletal / cytology*
  • Muscle, Skeletal / physiology*
  • Pulmonary Wedge Pressure*
  • Rats