Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2004 May;6(5):420-6. Epub 2004 Apr 25.

PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia.

Author information

  • 1Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

Abstract

Polarized cell movement is triggered by the development of a PtdIns(3,4,5)P(3) gradient at the membrane, which is followed by rearrangement of the actin cytoskeleton. The WASP family verprolin homologous protein (WAVE) is essential for lamellipodium formation at the leading edge by activating the Arp2/3 complex downstream of Rac GTPase. Here, we report that WAVE2 binds to PtdIns(3,4,5)P(3) through its basic domain. The amino-terminal portion of WAVE2, which includes the PtdIns(3,4,5)P(3)-binding sequence, was localized at the leading edge of lamellipodia induced by an active form of Rac (RacDA) or by treatment with platelet-derived growth factor (PDGF). Production of PtdIns(3,4,5)P(3) at the cell membrane by myristoylated phosphatidylinositol-3-OH kinase (PI(3)K) is sufficient to recruit WAVE2 in the presence of dominant-negative Rac and latrunculin, demonstrating that PtdIns(3,4,5)P(3) alone is able to recruit WAVE2. Expression of a full-length mutant of WAVE2 that lacks the lipid-binding activity inhibited proper formation of lamellipodia induced by RacDA. These results suggest that one of the products of PI(3)K, PtdIns(3,4,5)P(3), recruits WAVE2 to the polarized membrane and that this recruitment is essential for lamellipodium formation at the leading edge.

PMID:
15107862
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk