Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jul 2;279(27):28367-74. Epub 2004 Apr 21.

BOK and NOXA are essential mediators of p53-dependent apoptosis.

Author information

  • 1Department of Neuroscience, Georgetown University, Research Building WP-14, 3970 Reservoir Road NW, Washington, D. C. 20007, USA. ayakou01@georgetown.edu

Abstract

Cellular stress leads to DNA damage and activation of the intrinsic apoptotic pathway in which translocation of mitochondrial cytochrome c to the cytosol plays a critical role. Previous studies have suggested alternative mechanisms responsible for this process. We examined initiation mechanisms of the intrinsic apoptotic pathway using human neuroblastoma and breast cancer cells. Results indicated that translocation of cytochrome c does not require prior activation of caspases but rather depends on activation of specific BCL-2 family members, depending upon the type of death signal. Thus, DNA damage-induced apoptosis requires new protein synthesis, accumulation of p53 tumor suppressor protein, and p53-dependent induction of BOK and NOXA genes, while a role for BAX in this pathway is not essential. In contrast, apoptosis induced by staurosporine does not require protein synthesis but is characterized by translocation of BAX. Based on these findings, we propose a model of the intrinsic apoptotic cascade induced by DNA damage where proapoptotic BOK substitutes for a function of BAX.

PMID:
15102863
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk