Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuropsychopharmacology. 2004 Jul;29(7):1395-407.

Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men.

Author information

  • 1Brain Stimulation Laboratory, Center for Advanced Imaging Research (CAIR), Medical University of South Carolina (MUSC), Charleston, SC 29425, USA. lixi@musc.edu

Abstract

Little is known about how lamotrigine (LTG) works within brain circuits to achieve its clinical effects. We wished to determine whether the new technique of interleaved transcranial magnetic stimulation (TMS)/functional magnetic resonance imaging (fMRI) could be used to assess the effects of LTG on activated motor or prefrontal/limbic circuits. We carried out a randomized, double-blind, crossover trial involving two visits 1 week apart with TMS measures of cortical excitability and blood oxygen level-dependent TMS/fMRI. Subjects received either a single oral dose of 325 mg of LTG or placebo on each visit. In all, 10 subjects provided a complete data set that included interleaved TMS/fMRI measures and resting motor threshold (rMT) determinations under both placebo and LTG conditions. A further two subjects provided only rMT data under the two drug conditions. LTG caused a 14.9+/-9.6% (mean+/-SD) increase in rMT 3 h after the drug, compared with a 0.6+/-10.9% increase 3 h after placebo (t=3.41, df =11, p<0.01). fMRI scans showed that LTG diffusely inhibited cortical activation induced by TMS applied over the motor cortex. In contrast, when TMS was applied over the prefrontal cortex, LTG increased the TMS-induced activation of limbic regions, notably the orbitofrontal cortex and hippocampus. These results suggest that LTG, at clinically relevant serum concentrations, has a general inhibitory effect on cortical neuronal excitability, but may have a more complex effect on limbic circuits. Furthermore, the interleaved TMS/fMRI technique may be a useful tool for investigating regional brain effects of psychoactive compounds.

Copyright 2004 Nature Publishing Group

PMID:
15100699
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk