Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2004 May;16(5):1235-50. Epub 2004 Apr 14.

Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing.

Author information

  • 1Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France.


In plants, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are effectors of RNA silencing, a process involved in defense through RNA interference (RNAi) and in development. Plant viruses are natural targets of RNA silencing, and as a counterdefensive strategy, they have evolved highly diverse silencing suppressor proteins. Although viral suppressors are usually thought to act at distinct steps of the silencing machinery, there had been no consensus system so far that allowed a strict side-by-side analysis of those factors. We have set up such a system in Arabidopsis thaliana and used it to compare the effects of five unrelated viral silencing suppressors on the siRNA and miRNA pathways. Although all the suppressors inhibited RNAi, only three of them induced developmental defects, indicating that the two pathways are only partially overlapping. These developmental defects were remarkably similar, and their penetrance correlated with inhibition of miRNA-guided cleavage of endogenous transcripts and not with altered miRNA accumulation per se. Among the suppressors investigated, the tombusviral P19 protein coimmunoprecipitated with siRNA duplexes and miRNA duplexes corresponding to the primary cleavage products of miRNA precursors. Thus, it is likely that P19 prevents RNA silencing by sequestering both classes of small RNAs. Moreover, the finding here that P19 binds siRNAs and suppresses RNAi in Hela cells also suggests that this factor may be useful to dissect the RNA silencing pathways in animals. Finally, the differential effects of the silencing suppressors tested here upon other types of Arabidopsis silencing-related small RNAs revealed a surprising variety of biosynthetic and, presumably, functional pathways for those molecules. Therefore, silencing suppressors are valuable probes of the complexity of RNA silencing.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk