Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Ecol. 2004 May;13(5):1231-40.

Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali.

Author information

  • 1Institut d'Economie Rurale, Programme Ressources Forestières Centre Régional de la Recherche Agronomique de Sikasso, Sikasso, Mali.

Abstract

Ten microsatellite loci were used to investigate the impact of human activity on the spatial and temporal genetic structure of Vitellaria paradoxa (Sapotaceae), a parkland tree species in agroforestry systems in southern Mali. Two stands (forest and fallow) and three cohorts (adults, juveniles and natural regeneration) in each stand were studied to: (i) compare their levels of genetic diversity (gene diversity, HE; allelic richness, Rs; and inbreeding, FIS); (ii) assess their genetic differentiation (FST); and (iii) compare their levels of spatial genetic structuring. Gene diversity parameters did not vary substantially among stands or cohorts, and tests for bottleneck events were nonsignificant. The inbreeding coefficients were not significantly different from zero in most cases (FIS = -0.025 in forest and 0.045 in fallow), suggesting that the species is probably outbreeding. There was a weak decrease in F(IS) with age, suggesting inbreeding depression. Differentiation of stands within each cohort was weak (FST = 0.026, 0.0005, 0.010 for adults, juveniles and regeneration, respectively), suggesting extensive gene flow. Cohorts within each stand were little differentiated (FST = -0.001 and 0.001 in forest and fallow, respectively). The spatial genetic structure was more pronounced in fallow than in forest where adults showed no spatial structuring. In conclusion, despite the huge influence of human activity on the life cycle of Vitellaria paradoxa growing in parkland systems, the impact on the pattern of genetic variation at microsatellite loci appears rather limited, possibly due to the buffering effect of extensive gene flow between unmanaged and managed populations.

PMID:
15078458
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk