Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Endocrinol. 2004 Apr;181(1):157-67.

Analysis of estrogen-regulated genes in mouse uterus using cDNA microarray and laser capture microdissection.

Author information

  • 1Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea.


The steroid hormone, estrogen, plays an important role in various physiological events which are mediated via its nuclear estrogen receptors, ERalpha and ERbeta. However, the molecular mechanisms that are regulated by estrogen in the uterus remain largely unknown. To identify genes that are regulated by estrogen, the ovariectomized mouse uterus was exposed to 17beta-estradiol (E2) for 6 h and 12 h, and the data were analyzed by cDNA microarray. The present study confirms previous findings and identifies several genes with expressions not previously known to be influenced by estrogen. These genes include small proline-rich protein 2A, receptor-activity-modifying protein 3, inhibitor of DNA binding-1, eukaryotic translation initiation factor 2, cystatin B, decorin, secreted frizzled-related protein 2, integral membrane protein 2B and chemokine ligand 12. The expression patterns of several selected genes identified by the microarray analysis were confirmed by RT-PCR. In addition, laser capture microdissection (LCM) was conducted to determine the expression of selected genes in specific uterine cell types. Analysis of early and late responsive genes using LCM and cDNA microarray not only suggests direct and indirect effects of E2 on uterine physiological events, but also demonstrates differential regulation of E2 in specific uterine cell types. These results provide a basic background on global gene alterations or genetic pathways in the uterus during the estrous cycle and the implantation period.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk