Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 May 21;279(21):22204-8. Epub 2004 Apr 7.

Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana.

Author information

  • 1Department of Cell and Molecular Biology, Göteborg University, Box 462, 405 30 Göteborg, Sweden.


Protein carbonylation is an irreversible oxidative process leading to a loss of function of the modified proteins, and in a variety of model systems, including worms, flies, and mammals, carbonyl levels gradually increase with age. In contrast, we report here that in Arabidopsis thaliana an initial increase in protein oxidation during the first 20 days of the life cycle of the plant is followed by a drastic reduction in protein carbonyls prior to bolting and flower development. Protein carbonylation prior to the transition to flowering targets specific proteins such as Hsp70, ATP synthases, the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and proteins involved in light harvesting/energy transfer and the C2 oxidative photosynthetic carbon cycle. The precipitous fall in protein carbonyl levels is due to the specific reduction in the levels of oxidized proteins rather than an overall loss of chlorophyll and Rubisco associated with the senescence syndrome. The results are discussed in light of contemporary theories of aging in animals.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk