Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jun 18;279(25):26685-97. Epub 2004 Apr 1.

Proteome analysis of DNA damage-induced neuronal death using high throughput mass spectrometry.

Author information

  • 1Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA.


Isotope-coded affinity tag reagents and high throughput mass spectrometry were used to quantitate changes in the expression of 150 proteins in mouse wild-type (p53(+/+)) cortical neurons undergoing DNA damage-induced death. Immunological techniques confirmed several of the changes in protein expression, but microarray analysis indicated that many of these changes were not accompanied by altered mRNA expression. Proteome analysis revealed perturbations in mitochondrial function, free radical production, and neuritogenesis that were not observed in p53-deficient neurons. Changes in Tau, cofilin, and other proteins recapitulated abnormalities observed in neurodegenerative states in vivo. Additionally, DNA damage caused a p53-dependent decrease in expression of members of the protein kinase A (PKA) signaling pathway. PKA inhibition promoted death in the absence of DNA damage, revealing a novel mechanism by which endogenous down-regulation of PKA signaling may contribute to p53-dependent neuronal death. These data demonstrate the power of high throughput mass spectrometry for quantitative analysis of the neuronal proteome.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk