Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicon. 2004 Mar 15;43(4):455-65.

LC/MS analysis of brevetoxin metabolites in the Eastern oyster (Crassostrea virginica).

Author information

  • 1Gulf Coast Seafood Laboratory, U.S. Food and Drug Administration, P.O. Box 158, 1 Iberville Drive, Dauphin Island, AL 36528-0158, USA.

Abstract

Brevetoxin (PbTx) metabolism was examined in the Eastern oyster (Crassostrea virginica) following exposure to a Karenia brevis red tide, by using LC/MS(/MS) and cytotoxicity assay. Metabolites observed in field-exposed oysters were confirmed in oysters exposed to K. brevis cultures in the laboratory. Previously, we identified a cysteine conjugate and its sulfoxide (MH(+): m/z 1018 and 1034) as metabolites of the brevetoxin congener PbTx-2. In the present study, we found a cysteine conjugate and its sulfoxide with A-type brevetoxin backbone structure (MH(+): m/z 990 and 1006), as probable derivatives of PbTx-1. We also found glycine-cysteine-PbTx (m/z 1047 and 1075), gamma-glutamyl-cysteine-PbTx (m/z 1147), and glutathione-PbTx (m/z 1176 and 1204) conjugates with A- and B-type backbone structures. Amino acid-PbTx conjugates react with fatty acids through amide linkage to form a series of fatty acid-amino acid-PbTx conjugates. These fatty acid conjugates are major contributors to the composite cytototoxic responses obtained in extracts of brevetoxin-contaminated oysters. Other brevetoxin derivatives found in oysters are consistent with hydrolytic ring-opening and oxidation/reduction reactions.

PMID:
15051410
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk