Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2004 Apr;21(4):1732-47.

Multilevel linear modelling for FMRI group analysis using Bayesian inference.

Author information

  • 1Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK. woolrich@fmrib.ox.ac.uk

Abstract

Functional magnetic resonance imaging studies often involve the acquisition of data from multiple sessions and/or multiple subjects. A hierarchical approach can be taken to modelling such data with a general linear model (GLM) at each level of the hierarchy introducing different random effects variance components. Inferring on these models is nontrivial with frequentist solutions being unavailable. A solution is to use a Bayesian framework. One important ingredient in this is the choice of prior on the variance components and top-level regression parameters. Due to the typically small numbers of sessions or subjects in neuroimaging, the choice of prior is critical. To alleviate this problem, we introduce to neuroimage modelling the approach of reference priors, which drives the choice of prior such that it is noninformative in an information-theoretic sense. We propose two inference techniques at the top level for multilevel hierarchies (a fast approach and a slower more accurate approach). We also demonstrate that we can infer on the top level of multilevel hierarchies by inferring on the levels of the hierarchy separately and passing summary statistics of a noncentral multivariate t distribution between them.

PMID:
15050594
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk