The emerging technologies of neural xenografting and stem cell transplantation for treating neurodegenerative disorders

Drugs Today (Barc). 2004 Feb;40(2):171-89. doi: 10.1358/dot.2004.40.2.799428.

Abstract

Neural transplantation has normally been considered in the context of the neurodegenerative disorders, Parkinson's and Huntington's disease, which are characterized pathologically by the predominant loss of specific cells in the basal ganglia. This approach has now emerged from the experimental arena into the level of clinical trial, at least with respect to fetal human allografts. However the ethical and practical problems with using such tissue has led to the search for alternative sources of cells of which two of the most promising are cells from another species, such as the pig (xenografts), and stem cells. Neural transplantation using cells derived from the developing pig brain offers many advantages. Firstly, time-mated litters will overcome the issue of donor tissue supply. Secondly, advances in genetic technology have led to the development of pigs which have a reduced rejection potential. Thirdly, xenografted neural fiber outgrowth may be superior to that from neural grafts derived from the same species (allografts) which may increase the potential for circuit reconstruction. Disadvantages with this tissue source include concerns about transmission of zoonotic infections and the immunological rejection of the xenograft. Stem cells are defined as cells capable of division (self-renewal) and differentiation into a range of different cell types (differentiation). A variety of such cells exist including embryonic stem cells, neural stem cells derived from the developing fetal brain (neural progenitor cells), adult neural stem cells and adult stem cells originating from outside of the central nervous system. Each of these different types of stem cell have their own unique benefits but also disadvantages, and access to each type is constrained by a number of limiting factors. All of this means that the translation of these cell therapies into practice is not straightforward and must be done at a pace dictated by laboratory-based research rather than corporate share price.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Clinical Trials as Topic
  • Fetus / cytology
  • Humans
  • Neurodegenerative Diseases / therapy*
  • Stem Cell Transplantation / methods*
  • Transplantation, Heterologous*