Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2004 Mar 24;24(12):2905-13.

Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices.

Author information

  • 1Laboratory of Neurosciences and Institute of Pharmacology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.

Abstract

Both brain-derived neurotrophic factor (BDNF) and adenosine influence neuronal plasticity. We now investigated how adenosine influences the action of BDNF on synaptic transmission in the CA1 area of the rat hippocampal slices. Alone, BDNF (20-100 ng/ml) did not significantly affect field EPSPs (fEPSPs). However, a 2 min pulse of high-K(+) (10 mm) 46 min before the application of BDNF (20 ng/ml) triggered an excitatory action, an effect blocked by the TrkB receptor inhibitor K252a (200 nm), by the adenosine A(2A) receptor antagonist ZM 241385 (50 nm), and by the protein kinase A inhibitor H-89 (1 microm). Presynaptic, rather than postsynaptic depolarization was required to trigger the BDNF action because after K(+) depolarization BDNF also increased EPSCs recorded from pyramidal neurons voltage-clamped at -60 mV, and transient postsynaptic depolarization was unable to unmask the BDNF action. A weak theta burst stimulation of the afferents could elicit potentiation of synaptic transmission only when applied in the presence of BDNF. Activation of adenosine A(2A) receptors with CGS 21680 (10 nm), or the increase in extracellular adenosine levels induced by 5-iodotubercidin (100 nm) triggered the excitatory action of BDNF, a process prevented by ZM 241385 and by H-89. In the presence of dibutyryl-cAMP (0.5 mm), BDNF also increased fEPSPs but postsynaptic cAMP (0.5 mm) was unable to trigger the BDNF action. It is concluded that presynaptic activity-dependent release of adenosine, through activation of A(2A) receptors, facilitates BDNF modulation of synaptic transmission at hippocampal synapses.

PMID:
15044529
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk