Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioorg Med Chem. 2004 Mar 15;12(6):1403-12.

8,9-dihydroxy-1,2,3,11b-tetrahydrochromeno[4,3,2,-de]isoquinoline (dinoxyline), a high affinity and potent agonist at all dopamine receptor isoforms.

Author information

  • 1Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907, USA.

Abstract

The synthesis and preliminary pharmacological evaluation of 8,9-dihydroxy-1,2,3,11b-tetrahydrochromeno[4,3,2,-de]isoquinoline (5, now named dinoxyline) is described. This molecule was designed as a potential bioisostere that would conserve the essential elements of our beta-phenyldopamine D(1) pharmacophore (i.e., position and orientation of the nitrogen, hydroxyls, and phenyl rings). Previously, we have rigidified these elements using alkyl bridges, as exemplified in the dopamine D(1) full agonist molecules dihydrexidine (1) and dinapsoline (2). This approach has been modified and we now show that it is possible to tether these elements using an ether linkage. Preliminary pharmacology has revealed that 5 is a potent full D(1) agonist (K(0.5) <10 nM; EC(50)=30 nM), but also has high affinity for brain D(2)-like and cloned D(2) and D(3) receptors. Interestingly, whereas 1 and 2 and their analogues have only moderate affinity for the human D(4) receptor, 5 also has high affinity for this isoform. Moreover, although N-alkylation of 1 and 2 increases D(2) affinity, the N-allyl (15) and N-n-propyl (17) derivatives of 5 had decreased D(2) affinity. Therefore, 5 may be engaging different amino acid residues than do 1 and 2 when they bind to the D(2) receptor. This is the first example of a ligand with high affinity at all dopamine receptors, yet with functional characteristics similar to dopamine. These rigid ligands also will be useful tools to determine specific residues of the receptor transmembrane domains that are critical for agonist ligand selectivity for the D(4) receptor.

PMID:
15018913
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk