Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 May 14;279(20):20982-92. Epub 2004 Mar 11.

Gating allosterism at a single class of etomidate sites on alpha1beta2gamma2L GABA A receptors accounts for both direct activation and agonist modulation.

Author information

  • 1Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA.

Abstract

At clinical concentrations, the potent intravenous general anesthetic etomidate enhances gamma-aminobutyric acid, type A (GABA(A)) receptor activity elicited with low gamma-aminobutyric acid (GABA) concentrations, whereas much higher etomidate concentrations activate receptors in the absence of GABA. Therefore, GABA(A) receptors may possess two types of etomidate sites: high affinity GABA-modulating sites and low affinity channel-activating sites. However, GABA modulation and direct activation share stereoselectivity for the (R)(+)-etomidate isomer and display parallel dependence on GABA(A) beta subunit isoforms, suggesting that these two actions may be mediated by a single class of etomidate site(s) that exert one or more molecular effects. In this study, we assessed GABA modulation by etomidate using leftward shifts of electrophysiological GABA concentration responses in cells expressing human alpha1beta2gamma2L receptors. Etomidate at up to 100 microm reduced GABA EC(50) values by over 100-fold but without apparent saturation, indicating the absence of high affinity etomidate sites. In experiments using a partial agonist, P4S, etomidate both reduced EC(50) and increased maximal efficacy, demonstrating that etomidate shifts the GABA(A) receptor gating equilibrium toward open states. Results were quantitatively analyzed using equilibrium receptor gating models, wherein a postulated class of equivalent etomidate sites both directly activates receptors and enhances agonist gating. A Monod-Wyman-Changeux co-agonist mechanism with two equivalent etomidate sites that allosterically enhance GABA(A) receptor gating independently of agonist binding most simply accounts for direct activation and agonist modulation. This model also correctly predicts the actions of etomidate on GABA(A) receptors containing a point mutation that increases constitutive gating activity.

PMID:
15016806
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk