Progress in the understanding of the protein C anticoagulant pathway

Int J Hematol. 2004 Feb;79(2):109-16. doi: 10.1532/ijh97.03149.

Abstract

A natural anticoagulant pathway denoted the protein C system provides specific and efficient control of blood coagulation. Protein C is the key component of the system and circulates in the blood as a zymogen to an anticoagulant serine protease. Activation of protein C is achieved on the surface of endothelial cells by thrombin bound to the membrane protein thrombomodulin. The endothelial protein C receptor stimulates the activation of protein C on the endothelium. Activated protein C (APC) modulates blood coagulation by cleaving a limited number of peptide bonds in factor VIIIa (FVIIIa) and factor Va (FVa), cofactors in the activation of factor X and prothrombin, respectively. Vitamin K-dependent protein S stimulates the APC-mediated regulation of coagulation. Not only is protein S involved in the degradation of FVIIIa, but so is FV, which in recent years has been found to be a Janus-faced protein with both procoagulant and anticoagulant potentials. A number of genetic defects affecting the anticoagulant function of the protein C system, eg, APC resistance (Arg506Gln or FV Leiden) and deficiencies of protein C and protein S constitute major risk factors of venous thrombosis. The protein C system also has anti-inflammatory and antiapoptotic potentials, the molecular mechanisms of which are beginning to be unraveled. APC has emerged in recent years as a useful therapeutic compound in the treatment of severe septic shock. The beneficial effect of APC is believed be due to both its anticoagulant and its anti-inflammatory properties.

Publication types

  • Review

MeSH terms

  • Blood Coagulation / physiology*
  • Blood Coagulation Factors / metabolism*
  • Humans
  • Protein C / metabolism*

Substances

  • Blood Coagulation Factors
  • Protein C