Send to

Choose Destination
See comment in PubMed Commons below
Mech Dev. 2004 Mar;121(3):287-99.

GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear.

Author information

  • 1Department of Biomedical Sciences, Institute of Molecular Physiology, Addison Building, Western Bank, Sheffield S10 2TN, UK.


The function of the zinc finger transcription factor GATA3 was studied in a newly established, conditionally immortal cell line derived to represent auditory sensory neuroblasts migrating from the mouse otic vesicle at embryonic day E10.5. The cell line, US/VOT-33, expressed GATA3, the bHLH transcription factor NeuroD and the POU-domain transcription factor Brn3a, as do auditory neuroblasts in vivo. When GATA3 was knocked down reversibly with antisense oligonucleotides, NeuroD was reversibly down-regulated. Auditory and vestibular neurons form from neuroblasts that express NeuroD and that migrate from the antero-ventral, otic epithelium at E9.5-10.5. On the medial side, neuroblasts and epithelial cells express GATA3 but on the lateral side they do not. At E13.5 most auditory neurons express GATA3 but no longer express NeuroD, whereas vestibular neurons express NeuroD but not GATA3. Neuroblasts expressing NeuroD and GATA3 were located in the ventral, otic epithelium, the adjacent mesenchyme and the developing auditory ganglion. The results suggest that auditory and vestibular neurons arise from different, otic epithelial domains and that they gain their identity prior to migration. In auditory neuroblasts, NeuroD appears to be dependent on the expression of GATA3.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk