Format

Send to

Choose Destination
See comment in PubMed Commons below
J Psychiatr Res. 2004 May-Jun;38(3):335-45.

Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring.

Author information

  • 1Department of Psychiatry and Neurology, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3.

Abstract

An increased incidence of schizophrenia has been associated with several perinatal insults, most notably maternal infection during pregnancy and perinatal hypoxia. This study used a rat model to directly test if maternal exposure to bacterial endotoxin (lipopolysaccharide, LPS) during pregnancy alters behaviors relevant to schizophrenia, in offspring at adulthood. The study also tested if postnatal anoxia interacted with gestational LPS exposure to affect behavior. At adulthood, offspring from dams administered LPS on days 18 and 19 of pregnancy showed significantly increased amphetamine-induced locomotion, compared to offspring from saline-treated dams. A period of anoxia on postnatal day 7 had no effect on amphetamine-induced locomotion and there was no interaction between effects of gestational LPS and postnatal anoxia on this behavior. Offspring from LPS-treated dams also showed enhanced acoustic startle responses as adults, compared to offspring from saline-treated dams. In offspring tested for pre-pulse inhibition (PPI) of acoustic startle and for apomorphine modulation of PPI, no effects of either gestational LPS or of postnatal anoxia and no interactions between LPS and anoxia were observed. It is concluded that maternal LPS exposure during pregnancy in the rat may be a useful model to study mechanisms responsible for effects of maternal infection on behaviors relevant to schizophrenia, in offspring.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk