Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2004 Mar 1;117(Pt 7):979-87.

Proteins that bind A-type lamins: integrating isolated clues.

Author information

  • 1Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.


What do such diverse molecules as DNA, actin, retinoblastoma protein and protein kinase Calpha all have in common? They and additional partners bind 'A-type' lamins, which form stable filaments in animal cell nuclei. Mutations in A-type lamins cause a bewildering range of tissue-specific diseases, termed 'laminopathies', including Emery-Dreifuss muscular dystrophy and the devastating Hutchinson-Gilford progeria syndrome, which mimics premature aging. Considered individually and collectively, partners for A-type lamins form four loose groups: architectural partners, chromatin partners, gene-regulatory partners and signaling partners. We describe 16 partners in detail, summarize their binding sites in A-type lamins, and sketch portraits of ternary complexes and functional pathways that might depend on lamins in vivo. On the basis of our limited current knowledge, we propose lamin-associated complexes with multiple components relevant to nuclear structure (e.g. emerin, nesprin 1alpha, actin) or signaling and gene regulation (e.g. LAP2alpha, retinoblastoma, E2F-DP heterodimers, genes) as 'food for thought'. Testing these ideas will deepen our understanding of nuclear function and human disease.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk