Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2004 Mar;24(6):2546-59.

Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element.

Author information

  • 1Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.

Abstract

Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor beta (TGF-beta) signal. The ability of the Smads to act as transcriptional activators via TGF-beta-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-beta target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-beta-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-beta, and this repression is required for the manifestation of the TGF-beta cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-beta-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-beta inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.

PMID:
14993291
[PubMed - indexed for MEDLINE]
PMCID:
PMC355825
Free PMC Article

Images from this publication.See all images (7)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk