Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Circulation. 2004 Mar 23;109(11):1408-14. Epub 2004 Mar 1.

Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth.

Author information

  • 1Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KULeuven, Leuven, Belgium.



Epidemiological and histological evidence implicates proteinases of the matrix metalloproteinase (MMP) family in atherosclerosis and aneurysm formation. We previously indicated a role for urokinase-type plasminogen activator in atherosclerotic media destruction by proteolytic activation of MMPs. However, the role of specific MMPs, such as MMP-9 and MMP-12, in atherosclerosis remains undefined.


MMP-9- or MMP-12-deficient mice were crossed in the atherosclerosis-prone apolipoprotein E-deficient background and fed a cholesterol-rich diet. Mice were killed at 15 or 25 weeks of diet to study intermediate and advanced lesions, respectively. Loss of MMP-9 reduced atherosclerotic burden throughout the aorta and impaired macrophage infiltration and collagen deposition, while MMP-12 deficiency did not affect lesion growth. MMP-9 or MMP-12 deficiency conferred significant protection against transmedial elastin degradation and ectasia in the atherosclerotic media.


This study is the first to provide direct genetic evidence for a significant involvement of MMP-9, but not of MMP-12, in atherosclerotic plaque growth. In addition, deficiency of MMP-9 or MMP-12 protected apolipoprotein E-deficient mice against atherosclerotic media destruction and ectasia, mechanisms that implicate the involvement of these MMPs in aneurysm formation.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk