Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2004 Mar 9;43(9):2587-95.

Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.

Author information

  • 1Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.

Abstract

An essential step in lignan and lignin formation in planta is one electron oxidation of (E)-coniferyl alcohol (CA) to generate the radical intermediate (CA(*)), which can then undergo directed radical-radical couplings in vivo. For lignan formation in vitro and in vivo, stereoselective coupling of CA(*) only occurs to afford (+)-pinoresinol in the additional presence of (+)-pinoresinol forming dirigent protein (DP). Presented herein is a kinetic and thermodynamic study which reveals the central mechanistic details of the coupling process involved in DP-mediated coupling. DP activity was maximal between pH 4.25 and pH 6.0, with activity being maintained at temperatures below 33 degrees C. Equilibrium binding assays revealed that coniferyl alcohol was only weakly bound to the DP, with a K(D) of 370 +/- 65 microM. On the other hand, the enantiomeric excess of (+)-pinoresinol formed was dependent on both DP concentration and rate of CA oxidation and, thus, on apparent steady-state [CA(*)]. The data obtained could best be explained using a kinetic model where radical-radical coupling via DP competes with that occurring in open solution. Using this model, an apparent K(M) of about 10 nM was estimated from the saturation behavior of (+)-pinoresinol formation with respect to apparent steady-state [CA(*)]. These data strongly suggest that CA(*), rather than CA, is the substrate for DP, in agreement with earlier predictions. A mechanism of directed radical-radical coupling, where two coniferyl alcohol radical substrates are bound per protein dimer, is proposed.

PMID:
14992596
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk