Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2004 Mar 1;76(5):1366-73.

A monolithic silicon optoelectronic transducer as a real-time affinity biosensor.

Author information

  • 1Microelectronics Institute, NCSR Demokritos, 15310, Aghia Paraskevi, Attiki, Greece.


An optical real-time affinity biosensor, which is based on a monolithic silicon optoelectronic transducer and a microfluidic module, is described. The transducer monolithically integrates silicon avalanche diodes as light sources, silicon nitride optical fibers, and p/n junction detectors and efficiently intercouples these elements through a self-alignment technique. The transducer surface is hydrophilized by oxygen plasma treatment, silanized with (3-aminopropyl)triethoxysilane and bioactivated through adsorption of the biomolecular probes. The use of a microfluidic module allows real-time monitoring of the binding reaction of the gold nanoparticle-labeled analytes with the immobilized probes. Their binding within the evanescent field at the surface of the optical fiber causes attenuated total reflection of the waveguided modes and reduction of the detector photocurrent. The biotin-streptavidin model assay was used for the evaluation of the analytical potentials of the device developed. Detection limits of 3.8 and 13 pM in terms of gold nanoparticle-labeled streptavidin were achieved for continuous- and stopped-flow assay modes, respectively. The detection sensitivity was improved by silver plating of the immobilized gold nanoparticles, and a detection limit of 20 fM was obtained after 20-min of silver plating. In addition, two different analytes, streptavidin and anti-mouse IgG, were simultaneously assayed on the same chip demonstrating the multianalyte potential of the sensor developed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk