Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Physiol Biochem. 2004;14(1-2):31-40.

Differential alterations of receptor densities of three muscarinic acetylcholine receptor subtypes and current densities of the corresponding K+ channels in canine atria with atrial fibrillation induced by experimental congestive heart failure.

Author information

  • 1Research Center, Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada.

Abstract

Parasympathetic tone and congestive heart failure (CHF) are two of promoting factors in initiation and perpetuation of atrial fibrillation (AF). Recent studies indicate co-existence of multiple muscarinic acetylcholine receptor subtypes (mAChRs) that mediate several distinct K+ currents in the heart; inward rectifier K+ current IKACh by the M2, and two delayed rectifier K+ currents IKM3 and IK4AP by the M3 and M4 receptors, respectively. We studied the alterations of atrial mAChRs and their coupled K+ channels in the setting of AF in dogs with ventricular tachypacing-induced CHF. Whole-patch-clamp recordings showed that the current densities of IKACh (induced by 1 mM acetylcholine) and IK4AP (induced by 1 mM 4-aminopyridine) were ñ45% and ñ55% lower, respectively, while that of IKM3 (induced by 10 mM choline) was ñ75% higher, at a plateau voltage of 0 mV in atrial myocytes from CHF than those from healthy hearts. In healthy hearts, IKACh comprised >60%, and IKM3 and IK4AP <30%, of the total outward K+ currents mediated by mAChRs at depolarized potentials (between -20 mV and +50 mV). In AF atria of CHF dogs, however, the contribution of IKM3 increased to approximately 50%, exceeding those of IKACh or IK4AP. Western blot analyses with atrial membrane protein samples indicated that receptor densities of the M2 and M4 subtypes decreased by approximately 33% and approximately 22%, respectively, whereas that of the M3 subtype increased by approximately 2.3 folds, in parallel to the alterations of the corresponding K+ currents. We conclude that differential alterations of mAChR subtypes underlie differential alterations of their coupled K+ channels in AF atria and these differential alterations may contribute to atrial remodeling in AF induced in the setting of CHF.

Copyright 2004 S. Karger AG, Basel

PMID:
14976404
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Write to the Help Desk