Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23. Epub 2004 Feb 19.

Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited.

Author information

  • 1Department of Pathology and Medicine, Experimental and Clinical, University of Udine, Italy. ceriello@uniud.it

Abstract

Type 2 diabetes is a worldwide increasing disease resulting from the interaction between a subject's genetic makeup and lifestyle. In genetically predisposed subjects, the combination of excess caloric intake and reduced physical activity induces a state of insulin resistance. When beta cells are no longer able to compensate for insulin resistance by adequately increasing insulin production, impaired glucose tolerance appears, characterized by excessive postprandial hyperglycemia. Impaired glucose tolerance may evolve into overt diabetes. These 3 conditions, ie, insulin resistance, impaired glucose tolerance, and overt diabetes, are associated with an increased risk of cardiovascular disease. Because all these conditions are also accompanied by the presence of an oxidative stress, this article proposes oxidative stress as the pathogenic mechanism linking insulin resistance with dysfunction of both beta cells and endothelium, eventually leading to overt diabetes and cardiovascular disease. This hypothesis, moreover, may also contribute to explaining why treating cardiovascular risk with drugs, such as calcium channel blockers, ACE inhibitors, AT-1 receptor antagonists, and statins, all compounds showing intracellular preventive antioxidant activity, results in the onset of new cases of diabetes possibly being reduced.

PMID:
14976002
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk