Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2981-6. Epub 2004 Feb 18.

Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data.

Author information

  • 1School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

The dissection of complex biological systems is a challenging task, made difficult by the size of the underlying molecular network and the heterogeneous nature of the control mechanisms involved. Novel high-throughput techniques are generating massive data sets on various aspects of such systems. Here, we perform analysis of a highly diverse collection of genomewide data sets, including gene expression, protein interactions, growth phenotype data, and transcription factor binding, to reveal the modular organization of the yeast system. By integrating experimental data of heterogeneous sources and types, we are able to perform analysis on a much broader scope than previous studies. At the core of our methodology is the ability to identify modules, namely, groups of genes with statistically significant correlated behavior across diverse data sources. Numerous biological processes are revealed through these modules, which also obey global hierarchical organization. We use the identified modules to study the yeast transcriptional network and predict the function of >800 uncharacterized genes. Our analysis framework, SAMBA (Statistical-Algorithmic Method for Bicluster Analysis), enables the processing of current and future sources of biological information and is readily extendable to experimental techniques and higher organisms.

PMID:
14973197
[PubMed - indexed for MEDLINE]
PMCID:
PMC365731
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1.
Fig. 2.
Fig. 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk