Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Feb 15;64(4):1460-7.

Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity.

Author information

  • 1Metabolism Branch, Center for Cancer Research, National Cancer Institute/NIH, 6701 Rockledge Drive, Room 5217, MSC 7840, Bethesda, MD 20892, USA. rayam@mail.nih.gov

Abstract

The efficacy of monoclonal antibodies (mAbs) as single agents in targeted cancer therapy has proven to be limited. Arming mAbs with a potent toxic drug could enhance their activity. Here we report that conjugating geldanamycin (GA) to the anti-HER2 mAb Herceptin improved the activity of Herceptin. The IC(50)s of the immunoconjugate H-GA were 10-200-fold lower than that of Herceptin in antiproliferative assays, depending on the cell line. The H-GA mode of action involved HER2 degradation, which was partially lactacystin sensitive and thus proteasome dependent. The linkage between GA and Herceptin remained stable in the circulation, as suggested by the pharmacokinetics of Herceptin and conjugated GA, which were almost identical and significantly different from that of free GA. Tumor uptake of Herceptin and H-GA were similar (52 +/- 7 and 43 +/- 7% of the initial injected dose per gram tissue, respectively; P = 0.077), indicating no apparent damage attributable to conjugation. Therapy experiments in xenograft-bearing mice consisted of weekly i.p. doses, 4 mg/kg for 4 months. H-GA showed a greater antitumor effect than Herceptin because it induced tumor regression in 69% of the recipients compared with 7% by Herceptin alone. Median survival time was 145 days as opposed to 78 days, and 31% of the recipients remained tumor free 2 months after therapy was terminated versus 0% in the Herceptin group. Enhancement of Herceptin activity could be of significant clinical value. In addition, the chemical linkage and the considerations in therapeutic regimen described here could be applied to other immunoconjugates for targeted therapy of a broad spectrum of cancers.

PMID:
14973048
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk