Format

Send to

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 1993 Jun;12(4):391-401.

Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2).

Author information

  • 1Forest Service, U.S. Department of Agriculture, Pacific Southwest Forest and Range Experiment Station, 4955 Canyon Crest Drive, Riverside, CA 92507, USA.

Abstract

Seeds from two full-sib families of ponderosa pine (Pinus ponderosa) with known differences in growth rates were germinated and grown in an ambient (350 micro l l(-1)) or elevated (700 micro l l(-1)) CO(2) concentration. Gas exchange at both ambient and elevated CO(2) concentrations was measured 1, 6, 39, and 112 days after the seed coat was shed. Initial stimulation of CO(2) exchange rate (CER) by elevated CO(2) was large (> 100%). On Day 1, CER of seedlings grown in elevated CO(2) and measured at ambient CO(2) was significantly lower than the CER of seedlings grown and measured at ambient CO(2), indicating physiological adjustment of the seedlings exposed to elevated CO(2). Physiological acclimation to elevated CO(2) was complete by Day 39 when there was no significant difference in CER between seedlings grown and measured at ambient CO(2) and seedlings grown and measured at elevated CO(2). After 4 months, the light response of seedlings in the two treatments was determined at both ambient and elevated CO(2). Light compensation point, CER at light saturation, and apparent quantum efficiency of seedlings grown and measured at ambient CO(2) were not significantly different from those of seedlings grown and measured at elevated CO(2). With a short-term increase in CO(2), CER at light saturation (5.16 +/- 0.52 versus 3.13 +/- 0.30 micro mol CO(2) m(-2) s(-1)) and apparent quantum efficiency (0.082 +/- 0.011 versus 0.045 +/- 0.003 micro mol CO(2) micro mol(-1) quanta) were significantly increased. Leaf C/N ratio was significantly increased in the elevated CO(2) treatment. There were few significant differences between families for any response to elevated CO(2). Under the experimental conditions, high growth rate was not correlated with a greater response to elevated CO(2).

PMID:
14969909
[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk