Display Settings:

Format

Send to:

Choose Destination
Tree Physiol. 1994 Dec;14(12):1351-66.

Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. foliage: differential sensitivity to ozone exposure.

Author information

  • 1Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6034, USA.

Abstract

Extrapolation of the effects of ozone on seedlings to large trees and forest stands is a common objective of current assessment activities, but few studies have examined whether seedlings are useful surrogates for understanding how mature trees respond to ozone. This two-year study utilized a replicated open-top chamber facility to test the effects of subambient, ambient and twice ambient ozone concentrations on light-saturated net photosynthesis (P(max)) and leaf conductance (g(l)) of leaves from mature trees and genetically related seedlings of northern red oak (Quercus rubra L.). Gas exchange measurements were collected four times during the 1992 and 1993 growing seasons. Both P(max) and g(l) of all foliage followed normal seasonal patterns of ontogeny, but mature tree foliage had greater P(max) and g(l) than seedling foliage at physiological maturity. At the end of the growing season, P(max) and g(l) of the mature tree foliage exposed to ambient ( approximately 80-100 ppm-h) and twice ambient ( approximately 150-190 ppm-h) exposures of ozone were reduced 25 and 50%, respectively, compared with the values for foliage in the subambient ozone treatment ( approximately 35 ppm-h). In seedling leaves, P(max) and g(l) were less affected by ozone exposure than in mature leaves. Extrapolations of the results of seedling exposure studies to foliar responses of mature forests without considering differences in foliar anatomy and stomatal response between juvenile and mature foliage may introduce large errors into projections of the response of mature trees to ozone.

PMID:
14967609
[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk