Send to:

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 1995 May;15(5):307-15.

Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in needle morphology.

Author information

  • 1Institute of Ecology, Estonian Academy of Sciences, 40 Lai Str., EE 2400 Tartu, Estonia.


Needle dimensions, needle surface area, needle dry weight per area (LWA) and needle density (ND, needle weight per volume) were measured in terminal current-year shoots in a natural canopy of variably sized Picea abies (L.) Karst. trees growing along a light gradient. Needle shape was described as a rhomboid. Needle width (D(2)) increased with increasing diffuse site factor, a(d) (relative amount of penetrating diffuse solar radiation), whereas needle thickness (D(1)) remained nearly constant, resulting in an inverse relationship between D(1)/D(2) and a(d) and an increase in the ratio of total (TLA) to projected needle surface area (PLA) with increasing a(d). Because of the variations in needle morphology with respect to light availability, the shoot parameters used in present canopy models are also expected to be light-sensitive, and studies involving shoot morphology should also consider the variability in needle geometry. Needle dimensions and total tree height were not correlated. However, LWA increase with both increasing a(d) and total tree height. When LWA was expressed as the product of ND and needle height (NH, height of the rhomboidal transverse section of a needle), LWA appeared to increase with irradiance, because of changing NH, and with total tree height, because of changing needle density.

[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk