Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2004 Feb;23(2):137-52.

Probabilistic independent component analysis for functional magnetic resonance imaging.

Author information

  • 1Medical Vision Laboratory, Department of Engineering Science and the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford OX3 9DU, UK. beckmann@fmrib.ox.ac.uk

Abstract

We present an integrated approach to probabilistic independent component analysis (ICA) for functional MRI (FMRI) data that allows for nonsquare mixing in the presence of Gaussian noise. In order to avoid overfitting, we employ objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e., the number of activation and non-Gaussian noise sources. This enables us to carry out probabilistic modeling and achieves an asymptotically unique decomposition of the data. It reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normalization of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternative-hypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and artificial FMRI data, and compared to the spatio-temporal accuracy of results obtained from classical ICA and GLM analyses.

PMID:
14964560
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk