Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Apr 23;279(17):18085-90. Epub 2004 Feb 12.

The F subunit of Thermus thermophilus V1-ATPase promotes ATPase activity but is not necessary for rotation.

Author information

  • 1ATP System Project, Exploration Research for Advanced Technology, Japan Science and Technology Agency, 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.

Abstract

V(1)-ATPase from the thermophilic bacterium Thermus thermophilus is a molecular rotary motor with a subunit composition of A(3)B(3)DF, and its central rotor is composed of the D and F subunits. To determine the role of the F subunit, we generated an A(3)B(3)D subcomplex and compared it with A(3)B(3)DF. The ATP hydrolyzing activity of A(3)B(3)D (V(max) = 20 s(-1)) was lower than that of A(3)B(3)DF (V(max) = 31 s(-1)) and was more susceptible to MgADP inhibition during ATP hydrolysis. A(3)B(3)D was able to bind the F subunit to form A(3)B(3)DF. The C-terminally truncated F((Delta85-106)) subunit was also bound to A(3)B(3)D, but the F((Delta69-106)) subunit was not, indicating the importance of residues 69-84 of the F subunit for association with A(3)B(3)D. The ATPase activity of A(3)B(3)DF((Delta85-106)) (V(max) = 24 s(-1)) was intermediate between that of A(3)B(3)D and A(3)B(3)DF. A single molecule experiment showed the rotation of the D subunit in A(3)B(3)D, implying that the F subunit is a dispensable component for rotation itself. Thus, the F subunit binds peripherally to the D subunit, but promotes V(1)-ATPase catalysis.

PMID:
14963028
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk