Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2322-31. Epub 2004 Feb 12.

Localized transient increases in endothelial cell Ca2+ in arterioles in situ: implications for coordination of vascular function.

Author information

  • 1Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA.


Intracellular Ca2+ transients were identified in endothelial cells (ECs) in intact blood-perfused arterioles. ECs in cremaster muscle arterioles (diameter approximately 45 microm) in anesthetized mice were loaded with the Ca2+ indicator fluo 4-AM by intraluminal perfusion, after which blood flow was reestablished. Confocal microscopy was used to visualize Ca2+ as a function of fluo-4 intensity in real time. Separate sets of experiments were performed under the following conditions: control, ischemia, during inhibition of P(2x) or P(1) purinoreceptors, and with the application of exogenous adenosine. In controls, spontaneous EC Ca2+ transients displayed a wide range of activity frequency (1-32 events/min) and about one-third of these transient events were synchronized between adjacent ECs. The increase in Ca2+ remained localized and did not spread to encompass the entire cell body. Ca2+ transient activity decreased significantly with ischemia (from 9.9 +/- 0.6 to 3.1 +/- 0.3 events/min, n = 135) but was unaffected by P(2x) or P(1) receptor inhibition. Exogenous adenosine significantly increased the frequency of Ca2+ transients (to 12.8 +/- 0.9 events/min) and increased synchronization so that 50% of all Ca2+ events were synchronized between ECs. This response to adenosine was not due to an increase in shear stress. These data indicate that localized Ca2+ transients are sensitive to flow conditions and, separately, to metabolically active pathways (exogenous adenosine), although the basal activity occurs independently of P(2x) or P(1) receptors. These transients may represent a mechanism by which individual EC responses are integrated to result in coordinated arteriolar responses in situ.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk