Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2322-31. Epub 2004 Feb 12.

Localized transient increases in endothelial cell Ca2+ in arterioles in situ: implications for coordination of vascular function.

Author information

  • 1Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA.

Abstract

Intracellular Ca2+ transients were identified in endothelial cells (ECs) in intact blood-perfused arterioles. ECs in cremaster muscle arterioles (diameter approximately 45 microm) in anesthetized mice were loaded with the Ca2+ indicator fluo 4-AM by intraluminal perfusion, after which blood flow was reestablished. Confocal microscopy was used to visualize Ca2+ as a function of fluo-4 intensity in real time. Separate sets of experiments were performed under the following conditions: control, ischemia, during inhibition of P(2x) or P(1) purinoreceptors, and with the application of exogenous adenosine. In controls, spontaneous EC Ca2+ transients displayed a wide range of activity frequency (1-32 events/min) and about one-third of these transient events were synchronized between adjacent ECs. The increase in Ca2+ remained localized and did not spread to encompass the entire cell body. Ca2+ transient activity decreased significantly with ischemia (from 9.9 +/- 0.6 to 3.1 +/- 0.3 events/min, n = 135) but was unaffected by P(2x) or P(1) receptor inhibition. Exogenous adenosine significantly increased the frequency of Ca2+ transients (to 12.8 +/- 0.9 events/min) and increased synchronization so that 50% of all Ca2+ events were synchronized between ECs. This response to adenosine was not due to an increase in shear stress. These data indicate that localized Ca2+ transients are sensitive to flow conditions and, separately, to metabolically active pathways (exogenous adenosine), although the basal activity occurs independently of P(2x) or P(1) receptors. These transients may represent a mechanism by which individual EC responses are integrated to result in coordinated arteriolar responses in situ.

PMID:
14962843
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk