Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Invest Dermatol. 2004 Jan;122(1):1-6.

Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma.

Author information

  • 1Center for Rheumatology, Royal Free and University College Medical School, University College London, Royal Free Campus, London, UK. a.leask@rfs.ucl.ac.uk

Abstract

Connective tissue growth factor (CCN2), a member of the CCN family of proteins, is a cysteine-rich matricellular protein. Connective tissue growth factor is not normally expressed in dermal fibroblasts unless induced. The most potent inducer of connective tissue growth factor thus far identified is transforming growth factor beta. Connective tissue growth factor, however, is constitutively overexpressed by fibroblasts present in skin fibrotic lesions, including scleroderma. The overexpression of connective tissue growth factor present in fibrotic lesions contributes to the phenotype of scleroderma in that connective tissue growth factor promotes matrix deposition, and fibroblast adhesion and proliferation. In animal models, whereas either transforming growth factor beta or connective tissue growth factor alone produce only a transient fibrotic response, connective tissue growth factor and transforming growth factor beta act together to promote sustained fibrosis. Thus the constitutive overexpression of connective tissue growth factor by fibroblasts present in fibrotic lesions would be expected to contribute directly to chronic, persistent fibrosis. This review discusses recent information regarding insights into connective tissue growth factor biology and, using scleroderma as a model system, the part connective tissue growth factor might play in fibrotic disease.

PMID:
14962082
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk