Format

Send to

Choose Destination
See comment in PubMed Commons below
Eukaryot Cell. 2004 Feb;3(1):121-34.

Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum.

Author information

  • 1Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

Abstract

Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.

PMID:
14871943
PMCID:
PMC329499
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk