Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Kidney Int. 2004 Mar;65(3):768-85.

Heparan sulfate proteoglycans in glomerular inflammation.

Author information

  • 1Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, University Medical Centre, Nijmegen, The Netherlands.

Abstract

Heparan sulfate proteoglycans (HSPGs) are glycoproteins consisting of a core protein to which linear heparan sulfate side chains are covalently attached. These heparan sulfate side chains can be modified at different positions by several enzymes, which include N-deacetylases, N- and O-sulfotransferases, and an epimerase. These heparan sulfate modifications give rise to an enormous structural diversity, which corresponds to the variety of biologic functions mediated by heparan sulfate, including its role in inflammation. The HSPGs in the glomerular basement membrane (GBM), perlecan, agrin, and collagen XVIII, play an important role in the charge-selective permeability of the glomerular filter. In addition to these HSPGs, various cell types express HSPGs at their cell surface, which include syndecans, glypicans, CD44, and betaglycan. During inflammation, HSPGs, especially heparan sulfate, in the extracellular matrix (ECM) and at the surface of endothelial cells bind chemokines, which establishes a local concentration gradient recruiting leukocytes. Endothelial and leukocyte cell surface HSPGs also play a role in their direct adhesive interactions via other cell surface adhesion molecules, such as selectins and beta2 integrin. Activated leukocytes and endothelial cells exert heparanase activity, resulting in degradation of heparan sulfate moieties in the ECM, which facilitates leukocyte passage into tissues and the release of heparan sulfate-bound factors. In various renal inflammatory diseases the expression of agrin and GBM-associated heparan sulfate is decreased, while the expression of CD44 is increased. Heparan sulfate or heparin preparations affect inflammatory cell behavior and have promising therapeutic, anti-inflammatory properties by preventing leukocyte adhesion/influx and tissue damage.

PMID:
14871397
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk