Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1992 Sep;116(1):127-40.

Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division.

Author information

  • 1Department of Zoology, University of California, Davis and Bodega Marine Laboratory 94923.

Abstract

Embryos of the penaeoidean shrimp Sicyonia ingentis were examined at intervals during cleavage and gastrulation using antibodies to beta-tubulin and DNA and laser scanning confocal microscopy. Cleavage occurred in a regular pattern within four domains corresponding to the 4-cell-stage blastomeres and resulted in two interlocking bands of cells, each with similar spindle orientations, around a central blastocoel. Right-left asymmetry was evident at the 32-cell-stage, and mirror-image embryos occurred in a 50:50 ratio. Gastrulation was initiated by invagination into the blastocoel at the 62-cell-stage of two mesendoderm cells, which arrested at the 32-cell-stage. Further invagination and expansion of the archenteron during gastrulation was accompanied by rapid and oriented cell division. The archenteron was composed of presumptive naupliar mesoderm and the blastopore was located at the site of the future anus of the nauplius larva. In order to trace cell lineages and determine axial relationships, single 2- and 4-cell-stage blastomeres were microinjected with rhodamine-dextran. The results showed that the mesendoderm cells which initiated gastrulation were derived from the vegetal 2-cell-stage blastomere, which could be distinguished by its slightly larger size and the location of the polar bodies. The mesendoderm cells descended from a single vegetal blastomere of the 4-cell-stage. This investigation provides the first evidence for oriented cell division during gastrulation in a simple invertebrate system. Oriented cell division has previously been discounted as a potential morphogenetic force, and may be a common mechanism of invagination in embryos that begin gastrulation with a relatively small number of cells.

PMID:
1483382
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk