Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Apr 23;279(17):17079-84. Epub 2004 Feb 5.

Hyaluronan fragments stimulate endothelial recognition of injury through TLR4.

Author information

  • 1Department of Dermatology, University of California, San Diego and Veterans Affairs Medical Center, San Diego, California 92161, USA.

Abstract

Tissues must quickly recognize injury to respond to the rapid pace of microbial growth. In skin, dermal microvascular endothelial cells must also react to danger signals from the surrounding tissue and immediately participate by initiating the wound repair process. Components of the extracellular matrix such as hyaluronan are rapidly broken down into smaller molecular weight oligosaccharides in a wound, and these can activate a variety of biological processes. This study set out to determine if hyaluronan fragments released following injury can stimulate endothelial cells and what mechanism is responsible for this response. Using genechip microarray analysis, a response to hyaluronan fragments was detected in endothelial cells with the most significant increase observed for the chemokine IL-8. This observation was verified with qualitative reverse transcriptase-PCR and ELISA in human endothelial cell culture, and in a mouse model by observing serum levels of MIP-2 and KC following hyaluronan fragment administration in vivo. Activation was TLR4-dependent, as shown by use of TLR4 blocking antibody and TLR4-deficient mice, but not due to the presence of undetected contaminants as shown by inactivation following digestion with the hyaluronan-degrading enzyme chondroitinase ABC or incubation with the hyaluronan-specific blocking peptide Pep-1. Inactivation of LPS activity failed to diminish the action of hyaluronan fragments. These observations suggest that endogenous components of the extracellular matrix can stimulate endothelia to trigger recognition of injury in the initial stages of the wound defense and repair response.

PMID:
14764599
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk