Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2004 Apr 16;279(16):16805-12. Epub 2004 Feb 5.

Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway.

Author information

  • 1Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA.


Fanconi anemia is a genetic disorder characterized by bone marrow failure. Significant evidence supports enhanced apoptosis of hematopoietic stem/progenitor cells as a critical factor in the pathogenesis of bone marrow failure in Fanconi anemia. However, the molecular mechanism(s) responsible for the apoptotic phenotype are incompletely understood. Here, we tested whether alterations in the activation of a redox-dependent pathway may participate in the pro-apoptotic phenotype of primary Fancc -/- cells in response to oxidative stress. Our data indicate that Fancc -/- cells are highly sensitive to oxidant stimuli and undergo enhanced oxidant-mediated apoptosis compared with wild type controls. In addition, antioxidants preferentially enhanced the survival of Fancc -/- cells. Because oxidative stress activates the redox-dependent ASK1 pathway, we assessed whether Fancc -/- cells exhibited increased oxidant-induced ASK1 activation. Our results revealed ASK1 hyperactivation in H2O2-treated Fancc -/- cells. Furthermore, using small interfering RNAs to decrease ASK1 expression and a dominant negative ASK1 mutant to inhibit ASK1 kinase activity, we determined that H2O2-induced apoptosis was ASK1-dependent. Collectively, these data argue that the predisposition of Fancc -/- hematopoietic stem/progenitor cells to apoptosis is mediated in part through altered redox regulation and ASK1 hyperactivation.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk