Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Apr 23;279(17):17723-30. Epub 2004 Feb 2.

Hijacking of the human alkyl-N-purine-DNA glycosylase by 3,N4-ethenocytosine, a lipid peroxidation-induced DNA adduct.

Author information

  • 1Groupe "Réparation de l'ADN," CNRS Unité Mixte de Recherche 8113/LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France.

Abstract

Lipid peroxidation generates aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. E-bases have been implicated in vinyl chloride-induced carcinogenesis, and increased levels of these DNA lesions formed by endogenous processes are found in human degenerative disorders. E-adducts are repaired by the base excision repair pathway. Here, we report the efficient biological hijacking of the human alkyl-N-purine-DNA glycosylase (ANPG) by 3,N(4)-ethenocytosine (epsilonC) when present in DNA. Unlike the ethenopurines, ANPG does not excise, but binds to epsilonC when present in either double-stranded or single-stranded DNA. We developed a direct assay, based on the fluorescence quenching mechanism of molecular beacons, to measure a DNA glycosylase activity. Molecular beacons containing modified residues have been used to demonstrate that the epsilonC.ANPG interaction inhibits excision repair both in reconstituted systems and in cultured human cells. Furthermore, we show that the epsilonC.ANPG complex blocks primer extension by the Klenow fragment of DNA polymerase I. These results suggest that epsilonC could be more genotoxic than 1,N(6)-ethenoadenine (epsilonA) residues in vivo. The proposed model of ANPG-mediated genotoxicity of epsilonC provides a new insight in the molecular basis of lipid peroxidation-induced cell death and genome instability in cancer.

PMID:
14761949
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk