Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1392-6. Epub 2004 Jan 20.

Control of calcium oscillations by membrane fluxes.

Author information

  • 1Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand. sneyd@math.auckland.ac.nz

Abstract

It is known that Ca(2+) influx plays an important role in the modulation of inositol trisphosphate-generated Ca(2+) oscillations, but controversy over the mechanisms underlying these effects exists. In addition, the effects of blocking membrane transport or reducing Ca(2+) entry vary from one cell type to another; in some cell types oscillations persist in the absence of Ca(2+) entry (although their frequency is affected), whereas in other cell types oscillations depend on Ca(2+) entry. We present theoretical and experimental evidence that membrane transport can control oscillations by controlling the total amount of Ca(2+) in the cell (the Ca(2+) load). Our model predicts that the cell can be balanced at a point where small changes in the Ca(2+) load can move the cell into or out of oscillatory regions, resulting in the appearance or disappearance of oscillations. Our theoretical predictions are verified by experimental results from HEK293 cells. We predict that the role of Ca(2+) influx during an oscillation is to replenish the Ca(2+) load of the cell. Despite this prediction, even during the peak of an oscillation the cell or the endoplasmic reticulum may not be measurably depleted of Ca(2+).

PMID:
14734814
[PubMed - indexed for MEDLINE]
PMCID:
PMC337063
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk