Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2004 Mar 1;13(5):475-88. Epub 2004 Jan 13.

A phosphorylated, carboxy-terminal fragment of beta-amyloid precursor protein localizes to the splicing factor compartment.

Author information

  • 1Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.

Abstract

Beta-amyloid precursor protein (APP) is implicated in the pathobiology of Alzheimer's disease (AD). To gain insight into its function, we have investigated the proteolytic processing and post-translational modification of APP in relation to its intracellular traffic and localization. The proteolytic processing that generates the amyloid beta-peptide (Abeta) also releases into the cytoplasm the carboxy-terminal fragment of APP, Cgamma. Using the catecholaminergic cell line, CAD, and an antibody to a form of APP that is phosphorylated at Thr668 (pAPP; numbering for APP695), we show that a phosphorylated, carboxy-terminal fragment of APP, probably Cgamma, is present in the nucleus, where it localizes to subnuclear particles. The labeling with anti-pAPP antibody co-localizes with proteins that define the splicing factor compartment (SFC) [e.g. the small nuclear ribonucleoprotein (snRNP), U2B, and serine/arginine-rich (SR) proteins], but is excluded from the coiled bodies and the gems. This distribution of pAPP epitopes was found in CAD cells independent of their state of differentiation, as well as in primary cortical neurons, epithelial cells and fibroblasts. We further show that exogenously expressed Cgamma becomes phosphorylated, and distributes throughout the cell. A fraction of this Cgamma is translocated into the nucleus, where it co-localizes with endogenous pAPP epitopes. Finally, we show that the APP binding, scaffolding protein, Fe65 co-localizes with pAPP epitopes and with expressed Cgamma at intranuclear speckles. These results suggest that phosphorylated Cgamma accumulates at the SFC. Thus, APP may play a role in pre-mRNA splicing, and Fe65 and APP phosphorylation may regulate this function.

PMID:
14722157
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk