Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Mar 26;279(13):12027-35. Epub 2004 Jan 13.

SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes.

Author information

  • 1Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.


The hepatocyte nuclear factor-4alpha (HNF-4alpha)/PGC-1 pathway plays a crucial role in the transcriptional regulation of hepatic gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase (PEPCK) and Glc-6-Pase, genes that are activated at fasting and suppressed in a fed state. SREBP-1c dominates the nutritional regulation of lipogenic genes inverse to gluconeogenesis. Here we show the mechanism by which SREBP-1 suppresses expression of gluconeogenic genes. A series of luciferase reporter assays demonstrated that SREBP-1a and -1c effectively inhibited the PEPCK promoter activity that was induced by HNF-4alpha. The HNF-4alpha-binding site in the glucocorticoid-response unit was responsible for the SREBP-1 inhibition, although SREBP-1 did not bind to the PEPCK promoter as demonstrated by electrophoretic mobility shift assays. The inhibitory effect was more potent in the isoform of SREBP-1a than SREBP-1c and was eliminated by deletion of the amino-terminal transactivation domain of SREBP-1. Coimmunoprecipitation experiments demonstrated that these two transcription factors directly interact through the transactivation domain of SREBP-1 and the ligand binding/AF2 domains of HNF-4alpha. Estimation of coactivator recruitment using HNF-4alpha-Gal4DBD fusion assay showed that SREBP-1 competitively inhibited PGC-1 recruitment, a requirement for HNF-4alpha activation. Consistent with these results, hepatic PEPCK and Glc-6-Pase mRNA levels are suppressed by overexpression of SREBP-1a and -1c in the transgenic mice. Our data indicate that SREBP-1 has a novel role as negative regulator of gluconeogenic genes through a cross-talk with HNF-4alpha interference with PGC-1 recruitment.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk