Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2004 Jan;11(1):95-101. Epub 2003 Dec 29.

The structural basis of cephalosporin formation in a mononuclear ferrous enzyme.

Author information

  • 1Molecular Biophysics, Department of Cellular and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden.

Abstract

Deacetoxycephalosporin-C synthase (DAOCS) is a mononuclear ferrous enzyme that transforms penicillins into cephalosporins by inserting a carbon atom into the penicillin nucleus. In the first half-reaction, dioxygen and 2-oxoglutarate produce a reactive iron-oxygen species, succinate and CO2. The oxidizing iron species subsequently reacts with penicillin to give cephalosporin and water. Here we describe high-resolution structures for ferrous DAOCS in complex with penicillins, the cephalosporin product, the cosubstrate and the coproduct. Steady-state kinetic data, quantum-chemical calculations and the new structures indicate a reaction sequence in which a 'booby-trapped' oxidizing species is formed. This species is stabilized by the negative charge of succinate on the iron. The binding sites of succinate and penicillin overlap, and when penicillin replaces succinate, it removes the stabilizing charge, eliciting oxidative attack on itself. Requisite groups of penicillin are within 1 A of the expected position of a ferryl oxygen in the enzyme-penicillin complex.

PMID:
14718929
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk