Display Settings:

Format

Send to:

Choose Destination
Oncogene. 2004 Feb 19;23(7):1342-53.

The EBNA-3 gene family proteins disrupt the G2/M checkpoint.

Author information

  • 1Queensland Institute of Medical Research and Joint Oncology Program, University of Queensland, Brisbane, Australia. keniaK@qimr.edu.au

Abstract

The Epstein-Barr nuclear antigens (EBNA), EBNA-3, -4 and -6, have previously been shown to act as transcriptional regulators, however, this study identifies another function for these proteins, disruption of the G2/M checkpoint. Lymphoblastoid cell lines (LCLs) treated with a G2/M initiating drug azelaic bishydroxamine (ABHA) did not show a G2/M checkpoint response, but rather they display an increase in cell death, a characteristic of sensitivity to the cytotoxic effects of the drug. Cell cycle analysis demonstrated that the individual expression of EBNA-3, -4 or -6 are capable of disrupting the G2/M checkpoint response induced by ABHA resulting in increased toxicity, whereas EBNA-2, and -5 were not. EBNA-3 gene family protein expression also disrupted the G2/M checkpoint initiated in response to the genotoxin etoposide and the S phase inhibitor hydroxyurea. The G2 arrest in response to these drugs were sensitive to caffeine, suggesting that ATM/ATR signalling in these checkpoint responses may be blocked by the EBNA-3 family proteins. The function of EBNA-3, -4 and -6 proteins appears to be more complex than anticipated and these data suggest a role for these proteins in disrupting the host cell cycle machinery.

PMID:
14716295
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk