Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2004 Jan 1;76(1):78-85.

A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference.

Author information

  • 1Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.

Abstract

This work updates the recent progress made toward fabricating a real-time, quantitative, and biocompatible glucose sensor based on surface-enhanced Raman scattering (SERS). The sensor design relies on an alkanethiolate tri(ethylene glycol) monolayer that acts as a partition layer, preconcentrating glucose near a SERS-active surface. Chemometric analysis of the captured SERS spectra demonstrates that glucose is quantitatively detected in the physiological concentration range (0-450 mg/dL, 0-25 mM). In fact, 94% of the predicted glucose concentrations fall within regions A and B of the Clarke error grid, making acceptable predictions in a clinically relevant range. The data presented herein also demonstrate that the glucose sensor provides stable SERS spectra for at least 3 days, making the SERS substrate a candidate for implantable sensing. Glucose sensor reversibility and reusability is evaluated as the sensor is alternately exposed to glucose and saline solutions; after each cycle, difference spectra reveal that the partitioning process is largely reversible. Finally, the SERS glucose sensor successfully partitions glucose even when challenged with bovine serum albumin, a serum protein mimic.

PMID:
14697035
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk