Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2004 Jan 1;76(1):78-85.

A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference.

Author information

  • 1Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.


This work updates the recent progress made toward fabricating a real-time, quantitative, and biocompatible glucose sensor based on surface-enhanced Raman scattering (SERS). The sensor design relies on an alkanethiolate tri(ethylene glycol) monolayer that acts as a partition layer, preconcentrating glucose near a SERS-active surface. Chemometric analysis of the captured SERS spectra demonstrates that glucose is quantitatively detected in the physiological concentration range (0-450 mg/dL, 0-25 mM). In fact, 94% of the predicted glucose concentrations fall within regions A and B of the Clarke error grid, making acceptable predictions in a clinically relevant range. The data presented herein also demonstrate that the glucose sensor provides stable SERS spectra for at least 3 days, making the SERS substrate a candidate for implantable sensing. Glucose sensor reversibility and reusability is evaluated as the sensor is alternately exposed to glucose and saline solutions; after each cycle, difference spectra reveal that the partitioning process is largely reversible. Finally, the SERS glucose sensor successfully partitions glucose even when challenged with bovine serum albumin, a serum protein mimic.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk