Display Settings:

Format

Send to:

Choose Destination
Curr Biol. 2003 Dec 16;13(24):2159-69.

Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1.

Author information

  • 1Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.

Abstract

BACKGROUND:

Dynamic remodeling of the actin cytoskeleton requires rapid turnover of actin filaments, which is regulated in part by the actin filament severing/depolymerization factor cofilin/ADF. Two factors that cooperate with cofilin are Srv2/CAP and Aip1. Human CAP enhances cofilin-mediated actin turnover in vitro, but its biophysical properties have not been defined, and there has been no in vivo evidence reported for its role in turnover. Xenopus Aip1 forms a cofilin-dependent cap at filament barbed ends. It has been unclear how these diverse activities are coordinated in vivo.

RESULTS:

Purified native yeast Srv2/CAP forms a high molecular weight structure comprised solely of actin and Srv2. The complex is linked to actin filaments via the SH3 domain of Abp1. Srv2 complex catalytically accelerates cofilin-dependent actin turnover by releasing cofilin from ADP-actin monomers and enhances the ability of profilin to stimulate nucleotide exchange on ADP-actin. Yeast Aip1 forms a cofilin-dependent filament barbed end cap, disrupted by the cof1-19 mutant. Genetic analyses show that specific combinations of activities mediated by cofilin, Srv2, Aip1, and capping protein are required in vivo.

CONCLUSIONS:

We define two genetically and biochemically separable functions for cofilin in actin turnover. One is formation of an Aip1-cofilin cap at filament barbed ends. The other is cofilin-mediated severing/depolymerization of filaments, accelerated indirectly by Srv2 complex. We show that the Srv2 complex is a large multimeric structure and functions as an intermediate in actin monomer processing, converting cofilin bound ADP-actin monomers to profilin bound ATP-actin monomers and recycling cofilin for new rounds of filament depolymerization.

PMID:
14680631
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk