Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2004 Jan 15;117(Pt 2):133-41.

Intermediate filaments are dynamic and motile elements of cellular architecture.

Author information

  • 1Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago, IL 60611, USA.

Abstract

Recent evidence showing that intermediate filaments (IFs) are dynamic, motile elements of the cytoskeletal repertoire of vertebrate cells has overturned the long-standing view that they simply form static 'space filling' cytoplasmic networks. In fact, many types of IF are now known to engage in a remarkable array of movements that are closely associated with their assembly, disassembly and subcellular organization. Some of these motile properties are intrinsic to IFs and others are attributable to molecular crosstalk with either microtubules or actin-containing microfilaments. This crosstalk is, to a large extent, mediated by molecular motors, including conventional kinesin and cytoplasmic dynein. These motors are responsible for the high-speed delivery of nonfilamentous IF precursors and short filaments to specific regions of the cytoplasm, where they assemble into long IFs. Interestingly, the patterns and speeds of IF movements vary in different cell types and even within different regions of the same cell. These differences in motility may be related to their interactions with different types of molecular motor and/or other factors, such as IF-associated proteins.

PMID:
14676269
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk